Demographic inference using summary statistics

Ben Peter
Max Planck Institute for Evolutionary Anthropology
Leipzig, Germany

Motivation

Motivation

- Archaeological and linguistic sources of data give us alternative sources of data with which to confirm/contrast genetic inferences regarding population history
- Observational studies only possible - so statistical methods are key for inference

Similarity matrices

Covariance matrix of allele frequencies across HGDP populations

Phylogenetic trees

Neighbor-joining tree built with PHYLIP on the basis of similarity in allele frequencies:

Finestructure algorithm (Leslie et al. 2015)

Phylogenetic trees

Population tree with admixture events inferred using TreeMix software on the basis of allele frequencies:

Measuring Similarity vs measuring distance

Measuring Similarity vs measuring distance

Difference: $D_{i, i}=0$

How could we measure genetic similarity/dissimilarity in a population?

sample 1
time
sample 2

How could we measure genetic similarity/dissimilarity in a population?

sample 1

time

sample 2

- change in allele frequency
- loss of heterozygosity
- probability of coalescence

Introducing today's superhero

$$
F_{2}\left(P_{1}, P_{2}\right)=\mathbb{E}\left(p_{1}-p_{2}\right)^{2}
$$

Introducing today's superhero

$$
F_{2}\left(P_{1}, P_{2}\right)=\mathbb{E}\left(p_{1}-p_{2}\right)^{2}
$$

- change in allele frequency
- loss of heterozygosity
- probability of coalescence
F_{2} : Changing allele frequencies

$$
F_{2}\left(P_{1}, P_{2}\right)=\mathbb{E}\left(p_{1}-p_{2}\right)^{2}
$$

F_{2} : Loss of heterozygosity

$$
F_{2}=\frac{\mathbb{E} H_{0}-\mathbb{E} H_{t}}{2}
$$

F_{2} : Probability of coalescence

$$
F_{2}=\frac{1}{2} f \mathbb{E} H_{0}
$$

F_{2} : Probability of coalescence

$$
F_{2}=\frac{1}{2} f \mathbb{E} H_{0}
$$

How could we measure genetic similarity/dissimilarity between populations?

sample 1
space
sample 2

How could we measure genetic similarity/dissimilarity between populations?

|
sample 1
space
sample 2

- difference in allele frequency
- Heterozygosity: $H_{\text {between }}$ vs $H_{\text {within }}$
- Coalescence: $T_{\text {between }}$ vs $T_{\text {within }}$

How could we measure genetic similarity/dissimilarity between populations?

sample 1
space
sample 2

- difference in allele frequency
- Heterozygosity: $H_{\text {between }}$ vs $H_{\text {within }}$
- Coalescence: $T_{\text {between }}$ vs $T_{\text {within }}$

Conveniently, F_{2}, measures difference equivalently in this scenario

From differences to trees

|
sample 1

space

sample 2

- difference in allele frequency
- Heterozygosity: $H_{\text {between }}$ vs $H_{\text {within }}$
- Coalescence: $T_{\text {between }}$ vs $T_{\text {within }}$

Conveniently, F_{2}, measures difference equivalently in this scenario
$F_{2}:$ Time to coalescence

$$
F_{2}\left(P_{1}, P_{2}\right)=2 \mathbb{E} T_{12}-\mathbb{E} T_{11}-\mathbb{E} T_{12}
$$

F_{2} vs $F_{S T}$

$$
F_{S T}\left(P_{1}, P_{2}\right)=\frac{2 F_{2}\left(P_{1}, P_{2}\right)}{\mathbb{E} H}
$$

F_{2} vs $F_{S T}$

$$
F_{S T}\left(P_{1}, P_{2}\right)=\frac{2 F_{2}\left(P_{1}, P_{2}\right)}{\mathbb{E} H}
$$

Main difference is normalization:

- $F_{S T}=0$: no differentiation
- $F_{S T}=1$: maximum differentiation

F_{2} vs $F_{S T}$

$$
F_{S T}\left(P_{1}, P_{2}\right)=\frac{2 F_{2}\left(P_{1}, P_{2}\right)}{\mathbb{E} H}
$$

Main difference is normalization:

- $F_{S T}=0$: no differentiation
- $F_{S T}=1$: maximum differentiation
- $F_{2}=0$: no differentiation
- $F_{2}=$??? : maximum differentiation
F_{2} is additive

sample 1 time
sample 3

$$
F_{2}\left(P_{1}, P_{3}\right)=F_{2}\left(P_{1}, P_{2}\right)+F_{2}\left(P_{2}, P_{3}\right)
$$

F_{2} is tree-additive

$$
\begin{gathered}
\mathrm{A} \\
F_{2}\left(P_{1}, P_{2}\right)=F_{2}\left(P_{0}, P_{1}\right)+F_{2}\left(P_{0}, P_{2}\right)
\end{gathered}
$$

Dissimilarity matrices vs Tree

$$
F_{2}\left(P_{1}, P_{2}\right)=F_{2}\left(P_{0}, P_{1}\right)+F_{2}\left(P_{0}, P_{2}\right)
$$

testing treeness

$2 F_{3}\left(P_{X} ; P_{1}, P_{2}\right)=F_{2}\left(P_{X}, P_{1}\right)+F_{2}\left(P_{X}, P_{2}\right)-F_{2}\left(P_{1}, P_{2}\right)$

testing treeness

$2 F_{3}\left(P_{X} ; P_{1}, P_{2}\right)=F_{2}\left(P_{X}, P_{1}\right)+F_{2}\left(P_{X}, P_{2}\right)-F_{2}\left(P_{1}, P_{2}\right)$
E
$\begin{array}{lll}P_{1} & P_{X} & P_{2}\end{array}$

testing treeness

$$
2 F_{3}\left(P_{x} ; P_{1}, P_{2}\right)=F_{2}\left(P_{X}, P_{1}\right)+F_{2}\left(P_{X}, P_{2}\right)-F_{2}\left(P_{1}, P_{2}\right)
$$

E

$$
\begin{array}{lll}
P_{1} & P_{X} & P_{2}
\end{array}
$$

In a tree, $F_{3} \geq 0$!

example when this is violated

$$
2 F_{3}\left(P_{x} ; P_{1}, P_{2}\right)=F_{2}\left(P_{x}, P_{1}\right)+F_{2}\left(P_{x}, P_{2}\right)-F_{2}\left(P_{1}, P_{2}\right)
$$

example when this is violated

$$
\begin{aligned}
& 2 F_{3}\left(P_{X} ; P_{1}, P_{2}\right)=F_{2}\left(P_{X}, P_{1}\right)+F_{2}\left(P_{X}, P_{2}\right)-F_{2}\left(P_{1}, P_{2}\right) \\
& P_{1} \quad P_{X} \\
& t_{3}=P_{2}
\end{aligned}
$$

alternative interpretation

overlap between paths:

$$
\begin{gathered}
F_{2}\left(P_{1}, P_{2}\right)=\mathbb{E}\left(p_{1}-p_{2}\right)\left(p_{1}-p_{2}\right) \\
F_{3}\left(P_{x} ; P_{1}, P_{2}\right)=\mathbb{E}\left(p_{x}-p_{1}\right)\left(p_{x}-p_{2}\right)
\end{gathered}
$$

alternative interpretation

overlap between paths:

$$
\begin{gathered}
F_{2}\left(P_{1}, P_{2}\right)=\mathbb{E}\left(p_{1}-p_{2}\right)\left(p_{1}-p_{2}\right) \\
F_{3}\left(P_{X} ; P_{1}, P_{2}\right)=\mathbb{E}\left(p_{x}-p_{1}\right)\left(p_{x}-p_{2}\right) \\
\mathrm{F}
\end{gathered}
$$

outgroup- F_{3}

Assume we have an unknown sample, and would like to know which potential population P_{1} it is closest to:

What statistic would you calculate?

outgroup- F_{3}

Assume we have an unknown sample, and would like to know which potential population P_{1} it is closest to:

$F_{3}\left(P_{2} ; P_{X}, P_{1}\right)$ will be larger the closer P_{X} and P_{1} are!

outgroup- F_{3}

Assume we have an unknown sample, and would like to know which potential population P_{1} it is closest to:

$F_{3}\left(P_{2} ; P_{X}, P_{1}\right)$ will be larger the closer P_{X} and P_{1} are! Advantage over direct measures of differentiation if sampling times of P_{1} are different.

D-statistic / (F_{4}-statistic $)$

Imagine you sequence a Neandertal for the first time. How do you test for gene flow?

D-statistic

Imagine you sequence a Neandertal for the first time. How do you test for gene flow?

D-statistic

Imagine you sequence a Neandertal for the first time. How do you test for gene flow?

D-statistic

Imagine you sequence a Neandertal for the first time. How do you test for gene flow?

What does D / F_{4} actually measure?

$F 4=F_{2}\left(P_{1}, P_{3}\right)+F_{2}\left(P_{2}, P_{4}\right)-F_{2}\left(P_{1}, P_{2}\right)-F_{2}\left(P_{3}, P_{4}\right)$

What does D / F_{4} actually measure?

Two possibilities:

$$
\begin{aligned}
& 2 P_{1} \\
& 2 F_{4}=F_{2}\left(P_{1}, P_{3}\right)+F_{2}\left(P_{2}, P_{4}\right)-F_{2}\left(P_{1}, P_{2}\right)-F_{2}\left(P_{3}, P_{4}\right) \\
& 2 F_{4}=F_{2}\left(P_{1}, P_{3}\right)+F_{2}\left(P_{2}, P_{4}\right)-F_{2}\left(P_{1}, P_{4}\right)-F_{2}\left(P_{2}, P_{3}\right)
\end{aligned}
$$

how do these statistics behave under other demographic models?

Model		$F_{3}\left(P_{X} ; P_{1}, P_{2}\right)$	$F_{4}\left(P_{1} ; P_{X} ; P_{2}, P_{3}\right)$
Panmictic	$\begin{aligned} & P_{1} \\ P_{3} & P_{2} \end{aligned}$	0	0
Admixture Graph		$\begin{aligned} & t_{1}-2 \alpha(1-\alpha) \times \\ & \left(1-c_{x}\right) t_{r} \end{aligned}$	$(1-\alpha)\left(t_{2}-t_{1}\right)$
Island Model	P_{2} $P_{2}-$ P_{3}	$\frac{1}{M}$	0

how do these statistics behave under other demographic models?

Stepping stone	P_{1}	$-P_{X}$	$-P_{2}$	$-P_{3}$	$\frac{2}{7 M}$
Hierarchical stepping stone	P_{1}	P_{1}	P_{X}	P_{X}	P_{2}
P_{2}	$-\frac{\mathbf{0 . 0 6}}{\mathbf{M}}$	$-\frac{8}{7 M}$			
Serial founder model	$P_{1} \rightarrow P_{X} \rightarrow P_{2} \rightarrow P_{3}$	t_{x}	$\frac{14}{55 M}$		

Recap

1. F_{3} and F_{4} are simple statistics that test for admixture
2. F_{3} requires just 3 populations, and is most useful for recent admixture at approximately equal proportions
3. F_{4} is suitable to more ancient admixture, but more sensitive

