Demographic inference using summary statistics

Ben Peter Max Planck Institute for Evolutionary Anthropology Leipzig, Germany

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation

Motivation

 Archaeological and linguistic sources of data give us alternative sources of data with which to confirm/contrast genetic inferences regarding population history

 Observational studies only possible - so statistical methods are key for inference

Similarity matrices

Covariance matrix of allele frequencies across HGDP populations

Coop et al (2010) Genetics

Phylogenetic trees

Neighbor-joining tree built with PHYLIP on the basis of similarity in allele frequencies:

イロト 不得 トイヨト イヨト

э

Finestructure algorithm (Leslie et al. 2015)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Phylogenetic trees

Population tree with admixture events inferred using TreeMix software on the basis of allele frequencies:

୍ର୍ବ୍

э

Measuring Similarity vs measuring distance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Measuring Similarity vs measuring distance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Difference: $D_{i,i} = 0$

How could we measure genetic similarity/dissimilarity in a population?

sample 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How could we measure genetic similarity/dissimilarity in a population?

sample 1

time

sample 2

- change in allele frequency
- loss of heterozygosity
- probability of coalescence

Introducing today's superhero

$F_2(P_1, P_2) = \mathbb{E}(p_1 - p_2)^2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introducing today's superhero

$F_2(P_1, P_2) = \mathbb{E}(p_1 - p_2)^2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- change in allele frequency
- loss of heterozygosity
- probability of coalescence

F_2 : Changing allele frequencies

$F_2(P_1, P_2) = \mathbb{E}(p_1 - p_2)^2$

*F*₂: Loss of heterozygosity

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

F₂: Probability of coalescence

$\mathsf{C} \qquad F_2 = \frac{1}{2} f \mathbb{E} H_0$

・ロト ・西ト ・ヨト ・ヨー うらぐ

F₂: Probability of coalescence

$\mathsf{C} \qquad F_2 = \frac{1}{2} f \mathbb{E} H_0$

・ロト ・西ト ・ヨト ・ヨー うらぐ

How could we measure genetic similarity/dissimilarity between populations?

sample 1

sample 2

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

How could we measure genetic similarity/dissimilarity between populations?

sample 1

space

sample 2

- difference in allele frequency
- Heterozygosity: H_{between} vs H_{within}
- ► Coalescence: *T*_{between} vs *T*_{within}

How could we measure genetic similarity/dissimilarity between populations?

sample 1

space

sample 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- difference in allele frequency
- Heterozygosity: H_{between} vs H_{within}
- Coalescence: T_{between} vs T_{within}

Conveniently, F_2 , measures difference equivalently in this scenario

From differences to trees

sample 1

space

sample 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- difference in allele frequency
- Heterozygosity: H_{between} vs H_{within}
- ► Coalescence: *T*_{between} vs *T*_{within}

Conveniently, F_2 , measures difference equivalently in this scenario

$F_2(P_1, P_2) = 2\mathbb{E}T_{12} - \mathbb{E}T_{11} - \mathbb{E}T_{12}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

F₂ vs F_{ST}

$F_{ST}(P_1, P_2) = \frac{2F_2(P_1, P_2)}{\mathbb{E}H}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

F₂ vs F_{ST}

$F_{ST}(P_1,P_2)=\frac{2F_2(P_1,P_2)}{\mathbb{E}H}$

Main difference is normalization:

- $F_{ST} = 0$: no differentiation
- $F_{ST} = 1$: maximum differentiation

F₂ vs F_{ST}

$F_{ST}(P_1,P_2)=\frac{2F_2(P_1,P_2)}{\mathbb{E}H}$

Main difference is normalization:

- $F_{ST} = 0$: no differentiation
- $F_{ST} = 1$: maximum differentiation
- $F_2 = 0$: no differentiation
- ► F₂ =??? : maximum differentiation

F_2 is additive

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

F_2 is tree-additive

・ロト・西ト・西ト・日・ 日・ シック

Dissimilarity matrices vs Tree

$F_2(P_1, P_2) = F_2(P_0, P_1) + F_2(P_0, P_2)$

▲口▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● の Q @

testing treeness

$2F_3(P_X; P_1, P_2) = F_2(P_X, P_1) + F_2(P_X, P_2) - F_2(P_1, P_2)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

testing treeness

$2F_{3}(P_{X}; P_{1}, P_{2}) = F_{2}(P_{X}, P_{1}) + F_{2}(P_{X}, P_{2}) - F_{2}(P_{1}, P_{2})$ E P_{1} P_{X} P_{2}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

testing treeness

$2F_3(P_X; P_1, P_2) = F_2(P_X, P_1) + F_2(P_X, P_2) - F_2(P_1, P_2)$ $P_1 \quad P_X \quad P_2$ In a tree, $F_3 > 0!$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

example when this is violated

$2F_3(P_X; P_1, P_2) = F_2(P_X, P_1) + F_2(P_X, P_2) - F_2(P_1, P_2)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

example when this is violated

alternative interpretation

overlap between paths:

$$F_2(P_1, P_2) = \mathbb{E}(p_1 - p_2)(p_1 - p_2)$$

 $F_3(P_X; P_1, P_2) = \mathbb{E}(p_x - p_1)(p_x - p_2)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

alternative interpretation

overlap between paths:

Assume we have an unknown sample, and would like to know which potential population P_1 it is closest to:

What statistic would you calculate?

Assume we have an unknown sample, and would like to know which potential population P_1 it is closest to:

 $F_3(P_2; P_X, P_1)$ will be larger the closer P_X and P_1 are!

Assume we have an unknown sample, and would like to know which potential population P_1 it is closest to:

 $F_3(P_2; P_X, P_1)$ will be larger the closer P_X and P_1 are! Advantage over direct measures of differentiation if sampling times of P_1 are different.

D-statistic / (F₄-statistic)

Imagine you sequence a Neandertal for the first time. How do you test for gene flow?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

D-statistic

Imagine you sequence a Neandertal for the first time. How do you test for gene flow?

D-statistic

Imagine you sequence a Neandertal for the first time. How do you test for gene flow?

D-statistic

Imagine you sequence a Neandertal for the first time. How do you test for gene flow?

What does D/F_4 actually measure?

What does D/F_4 actually measure?

Two possibilities:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

how do these statistics behave under other demographic models?

Model		$F_3(P_X; P_1, P_2)$	$F_4(P_1; P_X; P_2, P_3)$	1
Panmictic	P_1 P_3 P_2	0	0	
Admixture Graph	$t_1 \xrightarrow{\alpha} t_2$	$\begin{array}{c} t_1 - 2\alpha(1-\alpha) \times \\ (1-c_x)t_r \end{array}$	$(1-\alpha)(t_2-t_1)$	
Island Model	$P_1 P_x P_2 P_3$ $P_1 P_x P_2 P_3$	$\frac{1}{M}$	0	

how do these statistics behave under other demographic models?

Stepping stone	$P_1 - P_X - P_2 - P_3$	$\left \frac{2}{7M} \right $	$\left -\frac{8}{7M} \right $	
Hierarchical stepping stone	$P_1 P_1 P_X P_X P_2 P_2$	$-\frac{0.06}{M}$	$\frac{14}{55M}$	
Serial founder model	$P_1 \rightarrow P_X \rightarrow P_2 \rightarrow P_3$	t_x	0	

Recap

- 1. F_3 and F_4 are simple statistics that test for admixture
- 2. F_3 requires just 3 populations, and is most useful for recent admixture at approximately equal proportions
- 3. F_4 is suitable to more ancient admixture, but more sensitive

イロト イポト イヨト イヨト

э